Showing posts with label j48. Show all posts
Showing posts with label j48. Show all posts

Sunday, May 12, 2013

predicciones con árboles.


árboles de decisión, son muy usados para establecer modelos predictivos,en base a hechos del pasado.

Ejecución de árboles en R.

que algoritmo utiliza R,

library(tree)
library(datasets)
iris.tr = tree(Species ~ ., iris)
iris.tr
> summary(iris.tr)

> plot(iris.tr)
> text(iris.tr)
> misclass.tree(iris.tr)
> misclass.tree(iris.tr, detail=TRUE)

> library(rpart)
> data(spam7)
> attach(spam7)
> spam.tree = rpart(formula = yesno ~ crl.tot + dollar + bang)
> spam.tree = rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 + make,method="class", data=spam7)
> plot(spam.tree)
> text(spam.tree)
printcp(spam.tree)
> spam.tree = rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 + make,method="class", data=spam7, cp=0.001)
> plotcp(spam.tree)
> spam7b.tree = prune(spam.tree, cp = spam.tree$cptable[which.min(spam.tree$cptable[,"xerror"]), "CP"])
> plot(spam7b.tree)
> text(spam7b.tree)



Con Weka desde R
> library("RWeka")
tree = make> tree = make_Weka_classifier("weka/classifiers/trees/J48", c("bar", "Weka_tree"))
> print(tree)
> WOW(tree)
> fm = tree(yesno ~ crl.tot + dollar + bang + money + n000 + make, data=spam7, control=Weka_control( S=TRUE, M=150))
> fm
table( observed= spam7$yesno, predicted = fitted(fm))
fm = tree(yesno ~ crl.tot + dollar + bang + money + n000 + make, data=spam7, control=Weka_control( S=TRUE, M=150))
library(party)
plot(fm)